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ABSTRACT

Data integration systems offer a uniform interface to a $etata
sources. Despite recent progress, setting up and maimgaani
data integration application still requires significanfropt effort
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1. INTRODUCTION

Data integration systems offer a single-point interface teet
of data sources. A data integration application is typjchdlilt by
creating a mediated schema for the domain at hand, androyesati

of creating a mediated schema and semantic mappings from themantic mappings between the schemas of the data sourceleand t

data sources to the mediated schema. Many applicationxtsente
involving multiple data sources (e.g., the web, personfrina-
tion management, enterprise intranets) do not requirdrftégra-
tion in order to provide useful services, motivatingay-as-you-go
approach to integration. With that approach, a systemssteith
very few (or inaccurate) semantic mappings and these mggpin
are improved over time as deemed necessary.

This paper describes the first completely self-configuriagad
integration system. The goal of our work is to investigate lanl-
vanced of a starting point we can provide a pay-as-you-gtesys
Our system is based on the new concept pf@babilistic medi-
ated schemahat is automatically created from the data sources.
We automatically create probabilistic schema mappings/dsen

mediated schema. The user (or application) poses queiigsthe
terminology of the mediated schema, and the query is reflated
onto the sources using the semantic mappings.

Despite recent progress in the field, setting up and maintain
a data integration application still requires significapfrant and
ongoing effort. Hence, reducing the effort required to geawata
integration application, often referred to as-the-flyintegration,
has been a recurring challenge for the field. In fact, as pdiout
in [12], many application contexts (e.g., the web, persamiair-
mation management, enterprise intranets) do not requlirenfa-
gration in order to provide useful services. This obseovated
to proposing goay-as-you-gaapproach to integration, where the
system starts with very few (or inaccurate) semantic maygpand

the sources and the mediated schema. We describe experimentthese mappings are improved over time as deemed necessary.

in multiple domains, including 50-800 data sources, andvsthat
our system is able to produce high-quality answers with modmu
intervention.
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This paper describes the first completely self-configuringad
integration system. The goal of our work is to investigate lanl-
vanced of a starting point we can provide a pay-as-you-gtesys
and how well a completely automated system can perform. We
evaluate our system on several domains, each consistir@-808
heterogeneous tables obtained from the Web. The key catitib
of the paper is that we can obtain very good query precisiah an
recall compared to the alternatives of (1) treating all ihgrses as
text, or (2) performing full manual integration.

To completely automate data integration, we need to automat
ically create a mediated schema from the sources and automat
cally create semantic mappings between the sources andettlie m
ated schema. Automatic creation of schema mappings hasedce
considerable attention [5, 7, 8, 9, 13, 14, 18, 21, 23, 26, R&}-
cently [10] introduced the notion @irobabilistic schema mappings
which provides a foundation for answering queries in a datta i
gration system with uncertainty about semi-automaticetated
mappings. To complete the puzzle, we show how to autombtical
create a mediated schema from a set of data sources.

The specific contributions of the paper are the followingsti
we show how to automatically create a mediated schema frah a s
of data sources. In doing so, we introduce the conceptpsbba-
bilistic mediated schema, which is a set of mediated schemas with
probabilities attached to each. We show that probabiliegdiated
schemas offer benefits in modeling uncertainty about thesgos
of attributes in the sources. We describe how to create a-dete
ministic mediated schema from the probabilistic one, wiiscthe
schema exposed to the user.

Our second contribution is an algorithm for creating prolsb



tic schema mappings from the data sources to the mediatechsch
Since a mapping is constructed from a set of weighted at&ritor-

have ambiguous meanings and some attributes can overlapiin t
meaning, this approach to creating a mediated schemagésuat

respondences between a source schema and the mediatedschernsignificant amount of uncertainty.

and such weighted correspondences do not uniquely deteranin
semantic mapping [10], we construct a probabilistic magirat

is consistent with the correspondences and obtains thenmahghn-
tropy.

As our final contribution, we describe a set of experimergal r
sults establishing the efficacy of our algorithms. We corapghe
precision and recall of our system with several alternatjygroaches
including: (1) a perfect integration where the mediatedesth and
mappings are created manually, (2) a document-centricoappr

where we perform keyword search on the sources, and (3) pos-

ing queries directly on the sources without a mediated seh&ke
show that our automatic methods achieve F-measure of ath@ad
compared to (1) and significantly outperform (2) and (3) aad s
eral variants of our algorithms. Hence, we believe that ppra@ach
can substantially reduce the amount of time taken to credta
integration application.

The paper is organized as follows. Section 2 gives an owerofe
our approach. Section 3 formally introduces the notion ofabp
abilistic mediated schema and presents some basic refultd a
them. Sections 4-6 present algorithms for the various steps
setting up a data integration system: constructing the ginitib-
tic mediated schema, generating probabilistic mappingeézh
source, and consolidating the schema and mappings, resbgct
Section 7 provides an experimental evaluation of our systec-
tion 8 presents related work and we conclude in Section 9.

2. OVERVIEW

Our approach is based on constructingrababilistic mediated
schema The following example illustrates the advantages of a
probabilistic mediated schema in our setting.

ExampPLE 2.1. Consider two source schemas both describing
people:

hAddr,
addr ess)

Si(nanme, hPhone, oPhone,

S2(nane, phone,

oAddr)

In S2, the attributgophone can either be a home phone number
or be an office phone number. Similariddress can either be a
home address or be an office address.

Suppose we cluster the attributes of S1 and S2. There are mul-
tiple ways to cluster the attributes and they correspondiffent
mediated schemas. Below we list a few (in the mediated sshema
we abbreviatehPhone as hP, oPhone asoP, hAddr ashA, and
0Addr asoA):

M1({name}, {phone, hP, oP}, {address, hA, 0A})
M2({name}, {phone, hP}, {oP}, {address, oA}, {hA})
M3({name}, {phone, hP}, {oP}, {address, hA}, {0A})
M4({name}, {phone, oP}, {hP}, {address, oA}, {hA})
M5({name}, {phone}, {hP}, {oP}, {address}, {hA}, {0A})

None of the listed mediated schemas is perfect. Schema
groups multiple attributes from S14, seems inconsistent because
phone is grouped withhPhone while address is grouped with

We begin with an overview of our approach and point out the oAddress. Schemas\/s, My and Ms are partially correct but

technical challenges we address in the paper. Creatingaaimiat
tegration application involves two activities that reguéignificant
human effort: creating the mediated schema and creatingrsem

none of them captures the fact thgltone and address can be
either home phone and home address, or office phone and office
address.

tic mappings between the data sources and the mediated achem  Even if we introduce probabilistic schema mappings, norteef

Both activities require knowledge of the domain as well asian
derstanding of the queries that can be frequently asked.

Our goal is to create a data integration applicatigthout any
human involvement. The resulting integration should dpest-
effortanswers, and should let the administrator improve the syste
in a pay-as-you-go fashion. To accomplish this goal, we neead-
tomatically create a mediated schema and semantic mapfpargs
the sources to that schema.

To support best-effort answers and improvement over tinee, w
build our system on a probabilistic data model. Recent waskih-
troduced probabilistic schema mappings [10], which enatidata
integration system to model its uncertainty on which scherap-
ping is correct. While we define probabilistic schema magpin
formally in the next section, intuitively, a probabilisichema map-
ping consists of aetof mappings with a probability attached to
each mapping. Previous research has also considered thierpro
of automatically creating (non-probabilistic) schema piags.

The mediated schema in a data integration application stsi
the set of relations and attributes that we wish to exposedosLof
the system. The mediated schema need not include all titaiats
that appear in the sources, nor does it include only thesettion
of the attributes that appear in all of the sources.

To build a mediated schema automatically, a natural styateg
to start from attributes in the source schemas, group tiaédave
the same meaning, and consider each result group as amiztirb
the mediated schema. Because of the heterogeneity of theesou
we are typically unsure of the semantics of the source ate#and
in turn of the clustering results. Furthermore, since latités can

listed mediated schemas will return ideal answers. For ggam
using M; prohibits returning correct answers for queries that con-
tain bothhPhone and oPhone because they are taken to be the
same attribute. As another example, consider a query thabaws
phone and address. Using Ms or M, as the mediated schema
will unnecessarily favor home address and phone over office a
dress and phone or vice versa. A system Withwill incorrectly
favor answers that return a person’s home address togetlir w
office phone number. A system with will also return a person’s
home address together with office phone, and does not distimg
such answers from answers with correct correlations.

A probabilistic mediated schema will avoid this problem.n€o
sider a probabilistic mediated schenM that includesMs and
M,, each with probability .5. For each of them and each source
schema, we generate a probabilistic mapping (Section 5).eko
ample, the set of probabilistic mappingdI for S; is shown in
Figure 1(a) and (b).

Now consider an instance 6f with a tuple

("Alice, '123-4567",
' 765-4321" ,

123, A Ave.’,
' 456, B Ave.’)

and a query

SELECT nane, phone, address

FROM Peopl e

The answer generated by our system with respediltand pM
is shown in Figure 1(c). (As we describe in detail in Sectipw8



Possible Mapping Probability
{(name, name), (hP, hPP), (oP, oP), 0.64
(hA, hAA), (oA, 0A)} '
{(name, name), (hP, hPP), (oP, oR), 0.16
(oA, hAA), (hA, 0A)} '
{(name, name), (oP, hPP), (hP, oR), 0.16
(hA, hAA), (oA, 0A)} '
{(name, name), (oP, hPP), (hP, oR), 0.04
(oA, hAA), (hA, 0A)} '
@)
Possible Mapping Probability
{(name, name), (oP, oPP), (hP, hR), 0.64
(0A, 0AA), (hA, hA)} '
{(name, name), (oP, oPP), (hP, hP), 0.16
(hA, 0AA), (0A, hA)} '
{(name, name), (hP, oPP), (oP, hR), 0.16
(oA, 0AA), (hA, hA)} '
{(name, name), (hP, oPP), (oP, hR), 0.04
(hA, 0AA), (0A, hA)} '
(b)
Answer Probability
('Alice’, '123-4567’, 123, A Ave.) 0.34
('Alice’, '765-4321’, 456, B Ave.’) 0.34
('Alice’, '765-4321", '123, A Ave.)) 0.16
('Alice’, '123-4567’, '456, B Ave.’) 0.16

(©

Figure 1: The motivating example: (a) p-mapping for .S, and
M3, (b) p-mapping for S1 and My, and (c) query answers w.r.t.
M and pM. Here we denote{phone, hP} by hPP, {phone,
oP} by oPP, {address, hA} by hAA, and {address, 0A} by
0AA.

allow users to compose queries using any attribute in theceou
Compared with using one @f/» to M5 as a mediated schema, our
method generates better query results in that (1) it treatsnaers
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Figure 2: Architecture of our automatic-setup data integration
system.

This step is not strictly necessary. For example, in some sit
ations we may prefer to present the user with the set of netliat
schemas and have her choose one that best suits the applEati
needs. We also show that under certain conditions, a priotabi
mediated schema actually adds expressive power to tharsyste

Figure 2 depicts the architecture of our system. At set-ue ti
we start with attribute matching, based on which we genedhate
probabilistic mediated schema and mappings. We then ddasel
them and generate the final mediated schema and mappings. At
query-answering time, for each data source we rewrite ayquer

with home address and home phone and answers with office ad-according to the mappings and answer the rewritten queries o

dress and office phone equally, and (2) it favors answers thith
correct correlation between address and phone number. O

Building on the concept of a probabilistic mediated schema,
approach consists of three steps:

Construct a probabilistic mediated schema:We begin by con-
structing a set of schemas with a probability associatet gaich
one (Section 4).

Find best probabilistic schema mappings:Given the probabilis-

tic mediated schema, we need to construct the appropriaiartie
mappings (Section 5). The key challenge in this step is tetidols

for automatic schema mapping typically prodweeighted corre-
spondencedetween pairs of attributes (one from each schema).
But such correspondences neither uniquely determine afispec
schema mapping, nor uniquely determine a distribution &spo
ble schema mappings. Therefore, we need to choose onéudistri
tion that seems tbestcapture the automatically generated attribute
correspondences.

Create a single mediated schema to expose to the usén this

the source data. We then combine the results from differetat d
sources by taking the disjunction of the probabilities oflean-
swer tuple; that is, if answerhas probabilityp;, ¢ € [1, n], for the

i-th data source, the final probability bis 1 — IT7"_; (1 —p;). Here

we assume that the different data sources are independeat- D
ing with data sources where some may be derived from others is
beyond the scope of this paper.

3. PROBABILISTIC MEDIATED SCHEMAS

In this section we formally define probabilistic mediatedesmas
and the semantics of queries posed over them. We also shew pre
cisely the relationship between probabilistic mediatdueatas and
deterministic (i.e., non-probabilistic) mediated schema

In our discussion, we consider a set of source schefias . .,
Sp} that are assumed to be roughly from the same domain. We
consider the case where each schema contaimgéetable with a
set of attributes. We denote the attributes in schéima € [1,n],
by attr(S;:), and the set of all source attributes ds That is,
A = attr(S1)U- - -Uattr(S,). We focus on this case because it al-

step we create a single mediated schema for the user ané creatready exposes many interesting problems and is a commorircase

semantic mappings to it by adjusting the mappings creatédein
previous step (Section 6). The consolidated mediated sahiem

such that it returns the same answers as we would have otbtaine

over the probabilistic mediated schema.

practice (e.g., integration on the web); we describe thdariges
in integrating multiple-table sources in future work (Sect9).

We begin with deterministic mediated schemas. We denote a me
diated schema for asetof sourdes, ..., Sn} by M = {A4, ...,



A}, where each of thel,’s is called amediated attribute The
mediated attributes asetsof attributes from the sources, i.el; C
A; foreachi,j € [I,m],i #j = A;NA; =0.

Note that whereas in a traditional mediated schema an wttrib
has a name, we do not deal with naming of an attribute in our
mediated schema and allow users to use any source attribute i
their queries. (In practice, we can use the most frequentsou
attribute to represent a mediated attribute when expobimgiedi-
ated schema to users.) If a query contains an attributeA;, i €
[1,m], then when answering the query we replaceverywhere

A probabilistic mediated schemzonsists of a set of mediated
schemas, each with a probability indicating the likelihdbat the
schema correctly describes the domain of the sources. \Wafiyr
define probabilistic mediated schemas as follows.

DEFINITION 3.1 (PROBABILISTIC MEDIATED SCHEMA). Let
{S1,...,S5,} be asetof schemas.phobabilistic mediated schema
(p-med-schema) fofS1,...,S,} is a set

M = {(MhPT(Ml)), ey (MhPT(Ml))}
where

e foreach: € [1,1], M; is a mediated schema fék, . . ., Sy,
and for eachi,j € [1,1],7 # j, M; and M; correspond to
different clusterings of the source attributes;

o Pr(M;) € (0,1], andXi_, Pr(M;) = 1. mi

Probabilistic schema mappings: Before we can define the se-

mantics of answers posed over mediated schemas, we reveew th

definition of probabilistic schema mappings, originallyraduced

in [10]. In this paper we mostly considene-to-one schema map-

pings Given a mediated schendd and a data sourcg&, a schema

mapping consists of a set of attribute correspondenceseveaeh
correspondence matches a source attributé to an attribute in

the mediated schem®. The mapping is one-to-one if each of the

attributes of the source or the mediated schema is involveat i

most one attribute correspondence.

A probabilistic schema mapping describes a probabilisise d
tribution of possible mappings between a source and a neetiat
schema. Formally, they are defined as follows:

DEFINITION 3.2 (PROBABILISTIC MAPPING). LetS be a
source schema antf be a mediated schema.pfobabilistic schema
mapping (p-mappinghetweens and M is a set

pM = {(m1, Pr(m1)),..., (m, Pr(m))}
such that

e for eachi € [1,1], m; is a schema mapping betwesSnand
M, and for everyi, j € [1,1],% # j = ms: # my;

e Pr(m;) € (0,1], andzé:lpr(mi) =1 =

We focus on one-to-one mappings because they are common in

practice and it is more feasible to generate such mappirgs th
more complex mappings. As we show later, our algorithm actu-
ally produces one-to-many schema mappings when it coratesd

a probabilistic mediated schema into a deterministic onené:to-
many mapping maps a source attribute to a set (e.g., cortaien

of attributes in the mediated schema.

Semantics of queriesWe measure the quality of the p-med-schema
and the p-mappings we generate by the accuracy of query answe
ing results. Our goal is to return all correct answers pdgsilith

wrong answers, but rank correct answers higher. That is, ave w
to obtain highprecision recall and highTop+ precision

However, before we can answer queries in this setting, wd nee
to define the semantics of queries. We define the semantics of a
p-med-schema by defining query answering with respect to a p-
med-schema and a set of p-mappings. Our definition is thealatu
extension of query answering with respect to p-mappingg [10

We consider select-project-join (SPJ) queries, a corefseQh
queries. Answering queries with respect to p-mappinggnsta
set of answer tuples, each with a probability indicating ltke-
lihood that the tuple occurs as an answer. In this paper we con
siderby-tablesemantics, which assumes there is one single possi-
ble mapping that is correct and it applies to all tuples ingberce
table. Given a querg), we compute answers by first answerifig
with respect to each possible mapping, and then for eacheansw
tuplet summing up the probabilities of the mappings with respect
to whicht is generated.

We now extend this notion for query answering that takes g-me
schema into consideration. Intuitively, we compute quersveers
by first answering the query with respect to each possibldatest
schema, and then for each answer tuple taking the sum ofaks pr
abilities weighted by the probabilities of the mediatedesnhs.

DEFINITION 3.3 (QUERY ANSWER). LetS be a source schema
andM = {(M., Pr(Mn)), ..., (M, Pr(M;))} be a p-med-schema.
Let pM = {pM(M,),...,pM(M;)} be a set of p-mappings
wherepM (M;) is the p-mapping betwee$i and M;. Let D be
an instance of5 andQ be a query.

Let¢ be a tuple. LetPr(t|M;),: € [1,!], be the probability
of ¢ in the answer of@ with respect toM; and pM (M;). Let
p = Xl Pr(t|M;) * Pr(M;). If p > 0, then we sayt, p) is a
by-table answer with respect dl and pM.

We denote all by-table answers @t1,pm (D). |

We say that query answers; and A2 areequal(denotedA;
As) if A; and A, contain exactly the same set of tuples with the
same probability assignments.

Expressive power:A natural question to ask at this point is whether
probabilistic mediated schemas provide any added expegsswer
compared to deterministic ones. Theorem 3.4 shows that ¢ome
sider one-to-manyschema mappings, where one source attribute
can be mapped to multiple mediated attributes, then any @b
tion of a p-med-schema and p-mappings can be equivalertly re
resented using a deterministic mediated schema with p-imggp
but may not be represented using a p-med-schema with determi
istic schema mappings. Note that we can easily extend thei-defi
tion of query answers to one-to-many mappings as one mediate
attribute can correspond to no more than one source atril§lio
maintain the flow of the paper, we provide only proof sketdoes
some theorems in the body of the paper, and defer completéspro
to the appendix.)

THEOREM3.4 (SUBSUMPTION). 1. Given a source schema
S, a p-med-schemd1, and a set of p-mappinggM be-
tween S and possible mediated schemasMi, there ex-
ists a deterministic mediated scherffaand a p-mapping
pM betweenS and T, such thatVD,Q : Qm,pm(D) =
Qrpm (D).

. There exists a source schetfiaa mediated schem&, a p-
mappingp M betweerS andT’, and an instancé® of S, such
that for any p-med-schen®d and any setn of deterministic
mappings betweefl and possible mediated schemas\ify
there exists a querg) such thatQw,m(D) # Qrpm (D).
ad



Proof sketch: To prove (1), we show that we can create a single
new mediated scheni,, and rewrite each original schema map-
ping in pM betweenS and a mediated schemaM to a corre-
sponding schema mapping betwegandT. For the second part,
we give an exampl§, T, and a p-mapping between them such that
no p-med-schema with deterministic mappings can représent

In contrast, Theorem 3.5 shows that if we restrict our aitbento
one-to-one mappings, then a probabilistic mediated schioea
add expressive power.

THEOREM 3.5. There exists a source schetfiza p-med-schema
M, a set of one-to-one p-mappingdV betweenS and possi-
ble mediated schemas NI, and an instanceD of S, such that
for any deterministic mediated scherffaand any one-to-one p-
mappingpM betweenS and T, there exists a querg) such that,

Qm,pMm (D) # QT pm (D). o

Proof sketch: We prove the theorem by constructing a p-med-
schemaM = {M;i, M-} and showing that for any single medi-
ated schemd” and any p-mappingM, a queryQ referring to an
attribute that is clustered differently if/; and M, would miss
answers from those generated with respect to on&/pfand M,
when posed over'. O
Constructing one-to-many p-mappings in practice is muakdra
than constructing one-to-one p-mappings. And, when weere r
stricted to one-to-one p-mappings, p-med-schemas gramtous
expressive power while keeping the process of mapping géoar
feasible.

4. MEDIATED SCHEMA GENERATION

This section describes how we create the probabilistic atedi

0: Input: Source schema$;, ..., S,.
Output: A set of possible mediated schemas.
1: Computed = {a1,...,am}, the set of all source attributes
2: foreach(j € [1,m])
Compute frequency - ;
3: SetA = {qa;|j € [1,m], f(a;) > 0}; /10 is a threshold
4: Construct a weighted graghi(V, E'), where (1)VV = A, and
(2) for eacha;, ar € A, s(aj,ar) > 7 — €, there is an edge
(aj, ax) with weights(a;, ax);
5: Mark all edges with weight less thary- ¢ asuncertain
6: for each (uncertain edge = (a1, a2) € E)

Removee from E if (1) a1 andas are connected by a
path with only certain edges, or (2) there exigise V, such
thata, andags are connected by a path with only certain edges
and there is an uncertain edge , as);

7. for each (subset of uncertain edges)

Omit the edges in the subset and compute a medjated
schema where each connected component in the graph corre-
sponds to an attribute in the schema;

8: return distinct mediated schemas.

|{i€[1n]la;€S:}.
(a;) = !

Algorithm 1: Generate all possible mediated schemas.

graph to obtain the mediated schema. A cluster is defined & be
connected component of the graph.

4.2 Creating a p-med-schema

We now show how to extend the algorithm we just described to
create a probabilistic mediated schefwh Given source tables
St,...,Sn, we first construct the multiple schemaé,, ..., M,
in M, and then assign each of them a probability.

schema. We begin by showing how to create a single mediated \We exploit two pieces of information available in the soute

schema, and then we extend the algorithm to create multipti-m
ated schemas with probabilities attached to each.

4.1 Creating a single mediated schema

Consider a set of source table scherfias . ., S,,. We are inter-
ested in creating a mediated schefiawhich best represents the
domain the tables are about. Our strategy is to créatby clus-
tering attributes in source tables. We wadtto contain all “im-
portant” attributes from source tables, and we want to enthat
semantically similar attributes from different tables aoenbined
into one cluster. For example, if two source tables havébatis
phone- no andphone, we would like to put them in the same
mediated attribute.

Our mediated-schema generation algorithm assumes trermis
pairwise attribute similarity measure, The similarity s(a;, a;)
between two source attributes anda; depicts how closely the
two attributes represent the same real-world concept. €Thas
been a significant amount of work in designing pairwise sinty
functions [26]. Improving on these techniques is not theugoof
our work. Instead, our algorithm is designed so it can leye@ny
existing technique.

bles: (1) pairwise similarity of source attributes; and ¢gtisti-
cal co-occurrence properties of source attributes. Wisdtesafirst
piece of information tells us when two attributes are likedybe
similar, the second tells us when two attributes are likelige dif-
ferent. Consider for example, source table schemas

S1:
S2:

(nane, addr ess, enmi | - addr ess)
(nane, honme- addr ess)

Pairwise string similarity would indicate that attrib@edress can

be similar to bothemail-address andhome-address. However,
since the first source table contaiaddress and email-address
together, they cannot refer to the same concept. Hence,rtte fi
table suggestaddress is different fromemail-address, making

it more likely thataddress refers tohome-address.

Algorithm 1 describes how we create the multiple mediated
schemas inM from Si,...,S, and a pairwise similarity func-
tion s. Steps 1-3 of the algorithm find the attributes that occur
frequently in the sources. Steps 4 and 5 construct the graph o
these high-frequency attributes. Unlike the graph congtdiin
Section 4.1, we allow an erreon the threshold for edge weights.
We thus have two kinds of edgesertain edgeshaving weight at

We create a mediated schema in three steps. First, we removdeastr + ¢, anduncertain edgeshaving weight between — ¢ and

infrequent attributes from the set of all source attributiest is, at-
tribute names that do not appear in a large fraction of scatues.
This step ensures that our mediated schema contains oolyriaf
tion that is relevant and central to the domain. In the secteg
we construct a weighted graph whose nodes are the attrithaes
survived the filter of the first step. An edge in the graph ilab
with the pairwise similarity between the two nodes it coriagVe
include an edge in the graph only if its weight is above a derta
thresholdr. Finally, we cluster the nodes in the resulting weighted

T+ €.

Steps 6-8 describe the process of obtaining multiple medliat
schemas. Specifically, a mediated schemiins created for ev-
ery subset of the uncertain edges. For every subset, wedesnsi
the graph resulting from omitting that subset from the graphe
mediated schema includes a mediated attribute for eactecteth
component in the resulting graph. Since, in the worst cdse, t
number of resulting graphs is exponential in the number oeun
tain edges, the parameteneeds to be chosen carefully. In addi-



0: Input: Possible mediated schemas,, ..
schemassy, ..., Sh.
Output: Pr(M),..., Pr(M;).
1: for each (i € [1,1])
Count the number of source schemas that are cons
with M;, denoted as;;
2: foreach (i € [1,1]) SetPr(M;) = =

i=1C%

., M, and source

i

Algorithm 2: Assign probabilities to possible mediated schemas.

7
.

Y
link to pubmed

pages

author
author(s)
authors

S D 1%
& .@ R

Figure 3: The p-med-schema for a set of bibliography sources
Each oval in the graph represents an attribute in the mediatd
schemas. The p-med-schema contains two possible schemas,
the first containing attributes in regions A and B1, and the sec-
ond containing attributes in regionsAand B2. They have prob-
abilities 0.703 and 0.297 respectively.

tion, Step 6 removes uncertain edges that when omitted will n
lead to different mediated schemas. Specifically, we reneolges
that connect two nodes already connected by certain eddes, A
we consider only one among a set of uncertain edges that conne
a particular node with a set of nodes that are connected bgicer
edges.

Our next step is to compute probabilities for possible media
schemas that we have generated. As a basis for the propabilit
assignment, we first define when a mediated scherarisistent
with a source schema. The probability of a mediated scherM in
will be the proportion of the number of sources with whichsit i
consistent.

DEFINITION 4.1 (CONSISTENCY). Let M be a mediated
schema for source$s,...,S,. We sayM is consistent witha
source schem&;, ¢ € [1,n], if there is no pair of attributes irb;
that appear in the same cluster ivf.

Intuitively, a mediated schema is consistent with a soundg ib
it does not group distinct attributes in the source (and aelstinct
real-world concepts) into a single cluster. Algorithm 2\wkdow
to use the notion of consistency to assign probabilitieshenp-
med-schema.

EXAMPLE 4.2. We applied our algorithm on a data set con-
taining 649 source tables about bibliographies extractenimf

10%; hence, only attributes that appeared in at least 10%hefta-
bles were clustered. We used an edge weight threshald-00.85
and error bar ofe = 0.02.
Figure 3 shows the p-med-schema generated by our algorithm.

stentAs we have an uncertain edge betwéssue andissn, the result

p-med-schema contains two possible mediated schemas, wier
groupseissn, issn andissue and the other keepssue apart.

First of all, we generated a very good clustering, with sethan
cally similar attributes grouped together (e.guthor, author(s),
and authors are grouped andpages and pages/rec. no are
grouped). Second, among the several hundreds of distineteso
attribute names, our mediated schema contains mostlybates
that are relevant to the domain. Note that many of our sowabées
are about Biology and Chemistry, so although attribudeganism
andlink to pubmed are not central to bibliographies in general,
they occur in a large fraction of source tables and are stlested.
Finally, notice that the three attributéssue, eissn, andissn are
clustered differently id/; and M>. Since a large number of source
schemas contain botlesue andissn (or eissn), they are consis-
tent with onlyM; but not M>; thus, M; has a higher probability
than Mo. ]

5. P-MAPPING GENERATION

We now address the problem of generating a p-mapping between
a source schema and a mediated schema. We begin by computing
weighted correspondences between the source attributkthan
mediated attributes. However, as we explain shortly, tiearebe
multiplep-mappings that are consistent with a given set of weighted
correspondences. Of all such p-mappings we choose the ahe th
maximizes the entropy of the probability assignment.

5.1 Computing weighted correspondences

A weighted correspondendgetween a pair of attributes spec-
ifies the degree of semantic similarity between them. Let
S(ai,...,am) be asource schema and(A., ..., A,) be a me-
diated schema. We denote 6% ;,i € [1,m],j € [1,n], the
weighted correspondence betwegmndA; and byp;_ ; the weight
of C; ;. Our first step is to compute a weighted correspondence be-
tween every pair of attributes. Recall that the's are clusters of
attributes. We compute the weighted correspondence frersith-
ilarity betweena; and each attribute idl; as follows:

Dij = Z s(ai, a).

a€A;

Whenever the similarity; ; is below a certain threshold, we set
it to 0, thereby ensuring that clearly incorrect mappings aot
generated.

Although weighted correspondences tell us the degree dbsim
ity between pairs of attributes, they do not tellwkich mediated
attribute a source attribute should map to. For example regse
a source attributphone is more similar to the mediated attribute
{phone, hPhone} than to {oPhone}, it could still make sense
to mapphone to either of them in a schema mapping. In fact,
given a set of weighted correspondences, there could s af
p-mappings that are consistent with it. We can define thetone-
many relationship between sets of weighted correspondesoe
p-mappings by specifying when a p-mapping@nsistent witra
set of weighted correspondences.

HTML tables on the web (we shall describe the data set in more 1athough we could have usedig or max instead ofsumas well,

detail in Section 7.1). We used a string similarity measorelie
pairwise attribute comparison. We used a frequency thielshof

the sum of pairwise similarities looks at the cluster as ale/bho
determine how welk; is connected with the cluster.



DEFINITION 5.1 (CONSISTENT PMAPPING). A p-mapping m: (AA), (BB): 0.3
pM is consistent witha weighted correspondendg; ; between m: (AA): 0.3
a pair of source and target attributes if the sum of the praliéds n3: (B,B): 0.2
of all mappingsm € pM containing correspondendg, j) equals mi: enpty: 0.2
i +; that is,
bij pMQI
pii= Y,  Pr(m). m: (AA), (BB): 0.5
mepM(Lpem m: (A A): 0.1

A p-mapping isconsistent witha set of weighted correspon- nB: enpty: 0.4
dencesC if it is consistent with each weighted correspondence

CecC 0 In a sensep M, seems better thgn\/> because it assumes that

the similarity betweend and A’ is independent of the similarity

!
However, not every set of weighted correspondences adroiea ~ PetweenB and B

sistent p-mapping. The following theorem shows under whart Inthe general case, among the many p-mappings that areseonsi
ditions a consistent p-mapping exists, and establishesmatiaa- tent with a set of weighted corresponden€swe choose the one
tion factor for weighted correspondences that will guazarthe with themaximum entropythat is, the p-mappings whose probabil-
existence of a consistent p-mapping. ity distribution obtains the maximum value df,_, —p; * logp;.

In the above example,M; obtains the maximum entropy.
THEOREM 5.2. Let C be a set of weighted correspondences The intuition behind maximum entropy is that when we need to

between a source scherdas, . . .,a,) and a mediated schema select among multiple possible distributions on a set ofusiee
M(A1,..., Ay). events, we choose the one that does not favor any of the emeatts
the others. Hence, we choose the distribution that doemtrot
e There exists a consistent p-mapping with respe€t iband duce new informatiorthat we didn’t have apriori. The principle
only if (1) for everyi € [1,m], Z;;lpm < 1 and (2) for of maximum entropy is widely used in other areas such as aatur
everyj € [1,n), Z;ilpm. <1. language processing [4, 24].
o Let To create the p-mapping, we proceed in two steps. First, we en
n m merate all possible one-to-one schema mappings bet$/eaad \/
r_ ) o ) - that contain a subset of correspondence€inSecond, we assign
M max{mml{;p”}’ ma%{; pisth probabilities on each of the mappings in a way that maximilzes
entropy of our result p-mapping.
Then, for eachi € [1,m], >°7_, Pol < 1 and for each Enumerating all possible schema mappings gi@is trivial:
jeln], >, 7377 <1. ] for each subset of correspondences, if it corresponds t@amn
one mapping, we consider the mapping as a possible mapping.
Proof sketch: The second part of the theorem is trivial and the first ~ Given the possible mappingsi, . .., m;, we assign probabili-
part is proved as follows. tiespi1,...,p toma,...,m; by solving the following constraint

Only if: Suppose in contrast, there exig§se [1,m] such that optimization problem (OPT):

>_j—1Pig.j > 1. LetpM be the p-mapping that is consistent with  py ni ze S —py #log p subj ect to:
C. Letm be the set of mappings inM that mapa;, to some -

Aj's. Then,Y"  _ Pr(m) = Y"_, pi,; > 1 and so the sum of 1L Vke[Ll,0<pe <1,
all probabilities inp M is greater tlz1an 1, contradicting the definition .
of p-mappings. Similarly, we can prove the second condition 2. ) k—1pr = 1,and

If: We transform the problem of constructing a consistent p- o —
mapping to a problem of finding a set of bipartite matchings in 8 ViJ: Ykena iupyemy P = Pis-
a graph. The vertex sets in the bipartite graph correspond to We can apply existing technology (such as [11]) in solving th
source and mediated attributes respectively, and edgesspond ~ OPT optimization problem. Although finding maximum-entyop
to p;,;'s. We prove the existence of a solution to the transformed solutions in general is costly, our experiments show thatex-
problem by induction on the maximum number of edges for any ecution time is reasonable for a one-time process; in auditive
vertex. O can reduce the search space by considegingp p-mapping§l0],

. ) which divides the weighted correspondences into groupsctdize
Based on Theorem 5.2, we normalize the weighted correspon- o uncertainty.

dences we generated as described previously by dividing the

M thats, | 6. P-MEDIATED-SCHEMA CONSOLIDA-
Py = TION
. . To complete the fully automatic setup of the data integratio

5.2 Generatlng p-mappings system, we consider the problem of consolidating a protssiboil

To motivate our approach to generating p-mappings, congige mediated schema into a single mediated schema and creating p
following example. Consider a source schefrg B) and a me- mappings to the consolidated schema. We require that theeasis
diated schemdA’, B'). Assume we have computed the following to queries over the consolidated schema be equivalent tortbe
weighted correspondences between source and mediaibdtatr over the probabilistic mediated schema.
pa,a = 0.6 andpg g = 0.5 (the rest are 0). The main reason to consolidate the probabilistic mediated

There are an infinite number of p-mappings that are consisten schema into a single one is that the user expects to see & sing|
with this set of weighted correspondences and below wenist t schema. In addition, consolidating to a single schema teadh
pMi: vantage of more efficient query answering: queries now neée t



o

. Input: Mediated schemag/,, ..., M;.
Output: A consolidated single mediated schefa
SetT = M.
: for (i = 2,...,1) modify T as follows:
for each (attribute A’ in M;)
for each (attribute A in T')
Divide Ainto AN A" andA — A,

ouhrwNE

> return T

Algorithm 3: Consolidate a p-med-schema.

rewritten and answered based on only one mediated schema.
note that in some contexts, it may be more appropriate to shew
application builder a set of mediated schemas and let hectsghe
of them (possibly improving on it later on).

Consolidating a p-med-schemaConsider a p-med-schenMd =
{(M1, Pr(M)),...,(M;, Pr(M;))}. We consolidatéM into a
single mediated scheni&. Intuitively, our algorithm (see Algo-
rithm 3) generates the “coarsest refinement” of the possiladdi-
ated schemas i such that every cluster in any of thd;’s is
equal to the union of a set of clusterslh Hence, any two at-
tributesa; anda; will be together in a cluster ifi" if and only if
they are together in every mediated schem&bf The algorithm
initializes T' to M; and then modifies each cluster Bfbased on
clusters fromM, to M;.

ExAMPLE 6.1. Consider a p-med-schem& = {Mi, M2},
where M; contains three attributes{ai,a2,as}, {as}, and
{as,a6}, and M, contains two attributes{az,as,as} and
{a1,as,a¢}. The target schemd would then contain four at-
tributes: {a1}, {CLQ7 ag}, {a4}, and{a5, aa}. O

Note that in practice the consolidated mediated schema isatime

e For each schema mapping in pM; with probability
p: if misinpM, with probabilityp’, modify the prob-
ability of m in pM to (p + p'); if m is notinpM, then
addm to pM with probability p.

The resulting p-mappingpM, is the final consolidated p-
mapping. The probabilities of all mappings pd/ add to
1.

Note that Step 2 can map one source attribute to multiple -medi
ated attributes; thus, the mappings in the replif are one-to-
many mappings, and so typically different from the p-mapman-

weerated directly on the consolidated schema. The followirep+

rem shows that the consolidated mediated schema and thel-cons
idated p-mapping are equivalent to the original p-med-szhand

p-mappings.

THEOREMG6.2 (MERGEEQUIVALENCE). For all queries@,
the answers obtained by posirg over a p-med-schemd =
{Ma, ..., M;} with p-mapping® M, ..., pM, is equal to the an-
swers obtained by posing over the consolidated mediated schema
T with consolidated p-mapping)M . |

PrROOF Consider a mediated schemd;,: € [1,[], and the
associated p-mappingM;. Let pM; be the p-mapping obtained
by modifying pM; in our algorithm. LetQ be a query. If an at-
tribute inQ is mapped to a source attribute ungéi/;, based on
our construction op M it will also be mapped to the same source
attribute undep M. Therefore) posed ove\/; with p-mapping
pM; returns the same set of answer tupleg)gsosed ovefl” with
p-mappingpM;, whereas each returned tuple’s probability is multi-
plied by Pr(M;). Finally, the probability of an answer tuple when
Q is posed over the p-med-schema is the weighted sum of the prob
abilities of the tuple returned by posirdg over each\/;, weighted
by probability Pr(M;). HenceQ returns the same answer over the

as the mediated schema that corresponds to the weightel grap original and consolidated schemas]

with only certain edges. Here we show the general algorithim f
consolidation, which can be applied even if we do not know the
specific pairwise similarities between attributes.

Consolidating p-mappings: Next, we consider consolidating p-
mappings specified w.r.tM;,..., M; to a p-mapping w.r.t. the
consolidated mediated scherffa Consider a sourcé& with p-
mappingspMi, ..., pM,; for M, ..., M, respectively. We gener-
ate a single p-mappingM betweenS andT in three steps. First,
we modify each p-mappingh;,i € [1,1], betweenS and M; to
a p-mapping M/ betweenS andT". Second, we modify the prob-
abilities in eachpM;. Third, we consolidate all possible mappings
in pM’s to obtainpM. The details are as follows.

1. For eachi € [1,!], modify p-mapping pM;: Do the fol-

lowing for every possible mapping in pM;:

e For every correspondence, A) € m between source
attributea and mediated attributd in M;, proceed as
follows. (1) Find the set of all mediated attributBsin
T such thatB C A. Call this setB. (2) Replacda, A)
in m with the set of all(a, B)'s, whereB € B.

Calll the resulting p-mapping)/; .

2. For eachi € [1,1], modify probabilities in pM;: Mul-
tiply the probability of every schema mapping i, by
Pr(M;), which is the probability ofA/; in the p-med-
schema. (Note that after this step the sum of probabilities
of all mappings irpM; is not1.)

3. Consolidate pM/’s: Initialize pM to be an empty p-
mapping (i.e., with no mappings). For eacke [1,!], add
pM] to pM as follows:

7. EXPERIMENTS

We now describe experiments that validate the performahce o
our algorithms. Our main goal is to examine the quality ofvears
obtained from a completely automatic setup of a data integra
system. In addition, we describe experiments validatiregue of
a probabilistic mediated schema, and showing that our dehe
scales well with the number of sources.

7.1 Experimental setup

We built a data integration system, referred to as UDI, based
the techniques described in the previous sections. UD ktakset
of data sources and automatically creates a mediated schedna
a probabilistic schema mapping between each data sourcénend
mediated schema. UDI accepts select-project queries oaxthe
posed mediated schema and returns answers ranked by thieir pr
abilities. We did not consider joins, as our mediated scheom
tained a single table. For each given query, UDI transfotrimga
a set of queries on the data sources according to the prasiabil
schema mappings, retrieves answers from individual dateces,
and then combines the answers assuming that the data saweces
independent (as we described in Section 2).

For the purposes of our evaluation, it suffices to store eagite
as a single table in a database, rather than access datasatirc
query time. We used MySQL for storing the data, and impleent
the query processor in Java. We used the SecondString foml [2
compute the Jaro Winkler similarity [27] of attribute nanegair-
wise attribute comparison. We used Knitro [1] to solve theapy
maximization problem in p-mapping construction. We conedc



Table 1: Number of tables in each domain and keywords that
identify the domain. Each domain contains 50 to 800 data

sources.
Domain | #Src Keywords
Movie 161 | movieandyear
Car 817 | makeandmodel
People 49 | hameone ofjob andtitle, and one of
organization, compangindemployer
one ofcourseandclass
Course | 647 | one ofinstructor, teacheandlecturer,
and one ofubject, departmerandtitle
Bib 649 author, title, yearand
one ofjournal andconference

our experiments on a Windows Vista machine with Intel Core 2
GHz CPU and 2GB memory.

For our experiments, we set the pairwise similarity thrécifiar
creating the mediated schema@®5, the error bar for uncertain
edges td.02, the frequency threshold for considering attributes in
the mediated schema 10%, and the correspondence threshold to

Table 2: Precision, recall and F-measure of query answeringf

the UDI system compared with a manually created integration
system. The results show thaUDI obtained a high accuracy in
guery answering.

Domain | Precision | Recall | F-measure
Golden standard
People 1 .849 .918
Bib 1 .852 .92
Approximate golden standard
Movie .95 1 .924
Car 1 917 .957
Course .958 .984 971
People 1 1 1
Bib 1 .955 977

recall/precision curve (R-P curvepr certain domains. An R-P
curve varies recall on the X-axis and precision on the Y-akis
ideal R-P curve is a horizontal line with a precision of 1.

Since most of the approaches we compared against do nat retur
ranked answers, to be fair to these approaches we do not eemov

0.85. Our experiments showed similar results even when the above duplicates before measuring precision/recall, althougtdid ob-

constants were varied by 20%.

serve similar results even with duplicates eliminated.yJoi the
R-P curve experiment duplicates were removed, as the empsti

Data and queries: We evaluated our system using real data sets peegs tuple probabilities.

from five domains:Movie, Car, People, Course, and Bibliog-
raphy. The tables were selected from a larger corpus of HTML
tables on the web for which attribute labels were clearlyseng.
We selected the tables for each domain by searching forst e
contained certain keywords (see the third column of Tahl&ath

of the tables typically contain tens to a few hundreds ofdspila-
ble 1 also shows the number of tables extracted for each domai

7.2 uDI v.s. manual integration

To compare UDI with manual integration, we constructed a
golden standardby manually creating mediated schemas and
schema mappings in two domairBepple andBib). To answer
queries, we followed the traditional data integration aggh, re-
formulating the query using the schema mappings, and takiag

For each domain, we chose 10 queries, each containing one toynjon of the results obtained from the relevant data sources

four attributes in theSELECT clause and zero to three predicates
in the WHERE clause. The attributes in tH8ELECT and WHERE
clauses are attributes from the exposed mediated schemzh Ea
predicate contains an attribute, an operator, and a valoerenthe
operator can be-, #, <, <, >, > andL| KE. When we selected the
queries, we varied selectivity of the predicates and lile@d of the
attributes being mapped correctly to cover all typical sase

Overview of experiments: Our main goal is to see how well we
can do without any human intervention in setting up a date-int
gration system. Hence, Section 7.2 compares the answetisett
by UDI with those that would be obtained from a data integra-

Since the manual integration with the number of sources we ha
is a significant undertaking, for the other three domains ora-c
pared UDI with an approximation to a golden standard. Specifi
cally, we retrieved all answers generated by UDI as well asith
swers obtained by directly posing the query over each dataxsp
and then manually removed incorrect answers. Note thatpghe a
proximate golden standard will still be high in precisiort may
loose recall compared with the true golden standard. Weuésdc
ten queries in each domain and report the average precisical)
and F-measure of the returned results.

Results: Table 2 shows that we obtain high precision and recall

tion system in which the mediated schema and schema mappingsfor all domains. In comparison to the true golden standarel, w

were created manually. In the absence of UDI, the typicaleamgh
imagined to bootstrap pay-as-you-go data integratioregysis to
consider all the data sources as a collection of text doctsreerd
apply keyword search techniques. Section 7.3 compares DI t
this approach and to several variations of UDI where somésof i
features are omitted. Section 7.4 demonstrates the valpmbé-
bilistic mediated schemas and Section 7.5 shows the qualitye
mediated schema we create. Finally, Section 7.6 toucheéfion e
ciency issues in UDI.

Performance measure:In our experiments we used three standard
metrics: precision, recalland F-measure Let 4 be the set of an-
swers that our system generates @&hbe the set of answers in the
golden standard. The three metrics are defined as folloy$rét
cision P = ‘A‘gf" (2 Recalt R = "Tgf‘ ; and (3)F-measure

F = 2xPxR

obtained a recall of about 0.85 on the two domains, and in com-
parison to the approximate golden standard, we obtainedadl re
of over 0.9 in all cases and over 0.95 in four of the domains. Ex
trapolating from the discrepancy in tigb and People domains
between the true and approximate golden standards, wetdkpéc
we would obtain recall around 0.8-0.85 with respect to thideo
standard on all domains. Our precision and recall resultdata
the main point of our work: we are able to completely automati
cally set up a data integration system to obtain high-quadisults,
and therefore be in an excellent starting point to improwedhata
integration system with time.

We believe that the main method to improve our results is to em
ploy a better schema matcher. Our matcher considered amnly si
ilarity of attribute names and did not look at values in thereo
sponding columns or other clues. Hence, we did not detettdha
cation andaddress are similar attributes. We also suffered some

P+R
To show how well our system ranks the answers, we plotted the loss of recall because we set a high threshold to chooseudri



correspondences in order to reduce the number of correspoes
considered in the entropy maximization. While there is ancha
that a p-mapping generated automatically can contain recor
mappings, leading to low precision, this did not happen wétgn

in our experiments. This is also due to the high threshold pve a
plied to correspondences, therefore preserving mosthecbones.

7.3 Competing automatic approaches

Next, we compared our system with alternative approaches fo
bootstrapping a data integration system. The first apprisot
consider the data sources as a collection of documents afime
keyword search. We tested three variants of this approachadh
one, given a query), we generated a keyword que/ by taking
all attribute names in th8ELECT clause and values in theHERE
clause of@). Using MySQL's keyword search engine, we tried the
following variants:

e KEYWORDNAIVE: return tuples wittanyof the keywords in
the quernyQ’.

e KEYWORDSTRUCT: classify keywords inQ’ according to
the schema of': if a keyword K occurs in an attribute name
of S, considerK as astructure termotherwise, considek’
as avalue term Return tuples witlany of the value terms.

e KEYWORDSTRICT: classify keywords inQ’ as in KEY-
WORDSTRUCT and return tuples withll value terms.

The second alternative approachoBRCE, answers) directly
on every data source that contains all the attribute3,iand takes
the union of returned answers.

Finally, we considered the GPMAPPING approach, where we
use the consolidated mediated schema but consider onlglieens
mapping with the highest probability, rather than all theppiags
in the p-mapping.

Results: Figure 4 shows that UDI obtains better results than the
other approaches. We make the following three observations

First, not surprisingly, all variants of &ywoRD performed
poorly on all domains. While we fully expected the preciséom
recall of keyword-based solutions to be poor, the main pafitihe
experiment was to measure how poorly they did compared to,UDI
since keyword search engines offer a simple and generai@olu
for searching any kind of information.

Second, the SURCE approach always obtained high precision,
but its recall was low. The reason for this is that in essence,
SouRcEconsiders only attribute-identity mappings between terms
in the query and terms in the sources. Thereforey®ce will
miss any answer that needs a more subtle mapping. I68dhese
domain, the precision of @JRCE s below 1 because a numeric
comparison performed on a string data type generates awa@n-
swers.

Third, the precision of BPMAPPING varied a lot from domain
to domain. When the mapping with the highest probability was
indeed a correct mapping,OPMAPPING obtained high precision;
but otherwise, DPMAPPING returned incorrect answers and re-
sulted in low precision. In any case, the recall @PMAPPING
was low since it did not consider other correct mappings i t
Bib domain, ToPMAPPING failed to return any correct answers).
The recall of TOoPMAPPING is even lower than SURCE because
the highest-probability mapping often did not produce adritity
mappings, picked by SURCE

7.4 Contribution of p-med-schema

To examine the contribution of using a probabilistic mesfiat
schema in improving query answering results, we consideved
approaches that creatsimglemediated schema:

=UDI ~SINGLE-MED

TN

Precision

01 02 03 04 05 06 07 08 09 1

Recall

Figure 6: R-P curves for theMovie domain. The experimental
results show thatUDI ranks query answers better.

e SINGLEMED: create a deterministic mediated schema based
on the algorithm in Section 4.1.

e UNIONALL: create a deterministic mediated schema that
contains a singleton cluster for each freqdesburce at-
tribute.

Figure 5 compares UDI with the above methods. We observed
that although 8v\GLEMED and UNIONALL perform better than the
alternatives considered in the previous section, thelydstihot per-
form as well as UDI. Specifically, SGLEMED obtained similar
precision as UDI but a lower recall, because it missed some co
rect mediated schemas and the accompanying mappingsoNJ
ALL obtained high precision but much lower recall. This is beeau
UNIONALL does not group source attributes with the same seman-
tics, resulting in correspondences with low weights; thus,may
miss some correct attribute correspondences in p-mapginerg-
tion. In addition, not grouping similar attributes leadsatoexplo-
sion in the number of possible mappings in p-mappings. IBibe
domain, UINIONALL ran out of memory in system setup.

We observed from Figure 5 that the average F-measure of UDI
was only slightly better thanIS8GLEMED. This is because UDI
beat SNGLEMED in recall only for queries that contain ambiguous
attributes. For other queries the recall was the same usitigtbe
approaches.

We took a closer look at how UDI andis§sLEMED rank their
answers by plotting the R-P curve in thMovie domain in Figure 6
(the other domains exhibited similar behavior). Recall wased
on the x-axis by taking togs answers based on probabilities. For
instance, to compute the UDI precision for 50% recall, we find
such that the tog<’ answers in UDI have 50% recall. We then
compute the precision for thegé answers.

Although UDI and $NGLEMED obtained similar precision in
this domain, UDI ranked the returned answers better: theeRriR
of UDI has a better shape in the sense that with a fixed rethisi
a higher precision. Note the precision at recall & different from
those of Figure 5 for two reasons. First, to rank tuples, vmiel
nated duplicates and combined their probabilities; hetie an-
swer set does not contain duplicates, unlike in the ansveerd for
Figure 5. Moreover, in the UDI domain, many incorrect answer
were ranked below all the correct answers, so we got a poecisi
higher than that in Figure 5.

7.5 Quality of mediated schema

Next, we tested the quality of the probabilistic mediateuesea
against a manually created schema. Recall that each mediate
schema corresponds to a clustering of source attributesice;le

2We use the same threshold to decide if a source attribute®ccu
frequently.
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Figure 4: Performance of query answering of theUDI system and alternative approaches. Th&DI system obtained the highest

F-measure in all domains.
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Table 3: Precision, recall and F-measure of p-med-schemas
generated byUDI.

Domain | Precision | Recall | F-measure
Movie .97 .62 .76
Car .68 .88 77
People .76 .86 .81
Course .83 .58 .68
Bib 77 .81 .79
Avg .802 .75 762

we measured its quality by computing theecision, recalland F-
measureof the clustering, where we counted how maayrs of at-
tributes are correctly clustered. To compute the measorggdb-
abilistic mediated schemas, we computed the measures ¢or ea
individual mediated schema and summed the results weidited
their respective probabilities.

Table 3 shows that we obtained high precision and recall, av-

eraging 0.8 and 0.75 respectively, over five domains. Weaxpe
that if we used a more sophisticated pair-wise attributechiag
algorithm, our results would be significantly better.

7.6 Setup efficiency

Finally, we measured the time taken to set up the data irttegra
system. To examine the effect of the number of data sourcéseon
efficiency of the system, we started with a subset of the dataces
in a domain and gradually added more data sources. We rejort o
results on th&€€ar domain, as it contains the largest number of data
sources. We observed similar trends for other domains.

Setup Time (s)

«
=]

0
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 817

# Sources

Figure 7: System setup time for theCar domain. When the
number of data sources was increased, the setup time increzs
linearly.

schema, (3) creating a p-mapping between each source setmeima
each possible mediated schema, and (4) consolidating theds-
schema and the p-mappings. For the entire data set, cogsisti
817 data sources, it took roughly 3.5 minutes in total to cpmé
the integration system. Considering the typical amountroé tit
takes to set up data integration applications, few mingesrieg-
ligible amount of time. Furthermore, Figure 7 shows thatséiip
time increased linearly with the number of data sources. @fe n
that the most time-consuming step in system setup is to shéve
maximum-entropy problem.

We also measured the time to answer queries in our systerh. Wit
817 data sources, UDI answered queries in no more than 2 sec-
onds. Since UDI is storing all the data locally and not commu-
nicating with live data sources, this number cannot be clenstd

Figure 7 shows the time to set up the system, which includes representative of a real data integration system. Insteadaum-

four steps: (1) importing source schemas, (2) creating ae@-m

ber illustrates that answering queries over the mediateeinsa and



the p-mappings we create does not add significant overhead.

8. RELATED WORK

We briefly describe related work on automated creation of me-
diated schemas and on schema-mapping creation. In cotdrast
previous work that focused on each of these problems intisala
ours is the first that handled the entire process of setting dgta
integration application. The goal of our work is to be ableffer
high-quality answers to queries without any human involeem

Creating mediated schema: Most of the previous work on au-
tomatically creating mediated schemas focused on thedtiealr
analysis of the semantics of merging schemas and the chbiaes

various matchers. The probabilistic schema mappings wergtn
are different as it contains all possible schema mappinafscibn-
form to the schema matching results and assigns probaebiliti
these mappings to reflect the likelihood that each mappimgrs
rect. In Section 7 we have compared our systema@MAPPING,
where we choose a single mapping from the sources to the taddia
schema. A further refinement would be to choose theitopap-
pings selected using one of the techniques above. FinatiteN
mann and Straccia [23] proposed generating probabilistiema
matchings that capture the uncertainty on each matchipg $tee
probabilistic schema mappings we create not only captureiou
certainty on results of the matching step, but also takedotesid-
eration various combinations of attribute correspondercel de-

need to be made in the process [3, 6, 15, 17, 22, 25]. The goal of scribe adistributionof possible schema mappings where the prob-

these work was to make as many decisions automatically as pos
sible, but where some ambiguity arises, refer to input frodea
signer.

The work closest to ours is by He and Chang [14] who consid-
ered the problem of generating a mediated schema for a settof w
sources. Their approach was to create a mediated schemia that
statistically maximallyconsistenwith the source schemas. To do
s0, they assume that the source schemas are creategthgtive
modelapplied to some mediated schema. Our probabilistic medi-
ated schemas have several advantages in capturing heteityge

and uncertainty in the domain. We can express a wider class of

attribute clusterings, and in particular clusterings ttegbture at-
tribute correlations described in our motivating exampieSec-
tion 2. Moreover, we are able to combine attribute matchimgy a
co-occurrence properties for the creation of the probsthilmedi-
ated schema, allowing for instance two attributes from anece

to have a nonzero probability of being grouped together émtie-
diated schema. Also, our approach is independent of a specifi
schema-matching technique, whereas their approach isl tiane
constructing generative models and hence must rely orstitafi
properties of source schemas.

Magnani et al. [20] proposed generating a set of alternatiegi-
ated schemas based on probabilistic relationships betetions
(such as annstructor relation intersects with deacher relation
but is disjoint with aStudent relation) obtained by sampling the
overlapping of data instances. Our technique focuses oohimat
attributes within relations. In addition, our approactoat explor-
ing various types of evidence to improve matching and wegassi
probabilities to the mediated schemas we generate.

Schema mapping:Schema mapping has been studied extensively
in the last ten years. Previous work has studied how to eaplar-
ious clues, including attribute names, descriptions, tigtes, con-
straints, and data values, to understand the semantictribfitgs
and match attributes (see [26] for a survey and [5, 7, 8, 91&4,
28] for some work since then). In addition, some work consid-
ered how to create schema mappings by choosing a set oli&trib
correspondences that best conform to certain heuristist@nts
involving the structure of the schema [8, 21]. Our algorittakes
existing schema matching techniques as a blackbox fobatéri
comparison, based on which we then create mediated schemhas a
probabilistic schema mappings.

Recent work has proposed notions to capture the uncertainty
data integration. Dong et al. [10] proposed the concept olbg@r
bilistic schema mapping and studied query answering witheet
to such mappings, but they did not describe how to create such
mappings. Magnani and Montesi [19] have empirically shoat t

top-k schema mappings can be used to increase the recall of a data

integration process and Gal [13] described how to geneogté t
schema matchings by combining the matching results geatbbgt

abilities of all mappings sum up to 1.

9. CONCLUSIONS

We showed that it is possible to automatically set up a data in
tegration application that obtains answers with high mieai and
recall. In doing so, we established a fairly advanced stgupoint
for pay-as-you-go data integration systems. At its core syatem
is built on modeling uncertainty in data integration sysierithe
main novel element we introduced to build our system is a{prob
abilistic mediated schema, which is constructed automidiby
analyzing the source schemas. We showed a set of experioents
five domains and hundreds of data sources that validatedpur a
proach.

Of course, setting up the data integration is just the firsp st
in the process. Aside from improvements to this processfieur
ture work will consider how to improve the data integratigfs-s
tem with time. We believe that the foundation of modeling un-
certainty will help pinpoint where human feedback can betmos
effective in improving the semantic integration in the syst in
the spirit of [16]. In addition, we plan to extend our techreg to
dealing with multiple-table sources, including mappingltiviable
schemas, normalizing mediated schemas, and so on.
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APPENDIX
A. PROOFS

Proof of Theorem 3.4:

1. Letthe target mediated scheffi@ontain the set of all source
attributes that appear in some schemabfeach in its own
cluster. We construct the set of mappings in the result p-
mappingpM as follows. For each mapping,; with prob-
ability p; in pM betweenS and mediated schemé; in M
having probabilityp(M;), we add a mappingn;; to pM,
with probability p; x p(M;). m.; is constructed as follows. If
m; maps attributeB € S to some clusterl in M, thenm;
mapsB to all the singleton clusters ifi that have an element
in A. Hence if a query asks for some attributeAnin M,
due toM; in the input it would retrieveB with probability
p: * p(M;) because of the probabilities of the corresponding

[17]
(18]

[19]

[20]

[21]

[22]

mappingsn which would give results equivalent to the above
for all queries. Intuitively, this is because, we would néed
construct two distinct mediates schemas, each with two sin-
gleton clusters, and encoding the two mappings above. How-
ever, there exists just one distinct mediated schema wiith al
singleton clusters for the set of two attribufes b}. |

Proof of Theorem 3.5: Consider a single data sour&a1, az)
and a single-tuple instance 8f D = {(z1, z2)}.

Consider a p-med-schendd = {M., M, }, whereM; contains
two mediated attributed; = {a1} andA; = {a2} (i.e., singleton
clusters), and\/; contains one mediated attribute = {a1,a2}.
We havep(M;) = 0.7 andp(M2) = 0.3.

Consider a sepM = {pM;, pM->} of p-mappings forM; and
M- respectively. BothpM; and pM, are indeed deterministic
(contain one single mapping with probability 1A, mapsA;
and A; to a1 andas respectively, and/, mapsAs to a; .

We claim that there does not exist a single mediated sctma
with a p-mappingpM betweenS andT" such thatQr ,n: (D)
Qm,pMm (D) for all Q. If there did exist such & andpM, T
would need to have; andas in different clusters. Otherwise,
for queryQ1: SELECT al, a2 FROM T.AnswerQlr ya (D)
contains either tupléz1, 1) or (z2,x2), but not(z1, z2), which
occurs inQ1lw,pm (D). Thus,T has two attributests = {a1}
andAs = {a2}. BecauseM is a one-to-one mapping, each pos-
sible mapping inpM can mapa; to one of A4 and As. Consider
query @2: SELECT al FROM T, Q2m,pMm (D) contains tuple
(z1) with probability 1. Thus, every possible mappingif/ must
mapa; to A4 and so cannot magp; to As. Now consider query
Q3: SELECT a2 FROM T. Answer@Q3w,pm (D) contains tuple
(z1) with probability .3; howeverQ3r 1 (D) does not contain
(z1), leading to contradiction. 0.

Proof of Theorem 5.2: The second part of the theorem is trivial
and we prove the first part.

Only if: Suppose in contrast, there exig§se [1, m] such that
>y Pig,; > 1. LetpM be the p-mapping that is consistent with
P. Letm be the set of mappings V/ that mapu;, to someA;’s.
Then,>", ., Pr(m) = 377_, pi,,; > 1 and so the sum of all
probabilities inpM is greater than 1, contradicting the definition
of p-mappings. Similarly, we can prove the second condition

If: We prove the theorem assuming gll;’s are rational num-
bers. If some op;_ ;'s are irrational, we can convert the problem to
an equivalent problem with rational ;'s. Details of this conver-
sion are omitted.

First note that there exists a rational humpesuch thatvi, j,
”TJ is a positive integer. The existence of such llows from
the fact that allp; ;'s are rational. We transform the set of cor-
respondence€ to a new set of correspondenc€s as follows:
for each correspondencg; ; € C with probability p; ;, there is
a correspondence’ ; € C’ with weightc;,; = %L which is an
integer. Intuitively, between each pair of attributes éharec;, ;
unit correspondencegach of which has probability.

Let M be the maximum number of correspondences for any

mediated schema and mapping, and in our constructed targetsource or mediated attribute. That is,

also it would retrieveB with the same probability because of
mij.

2. Consider the following example. L&tbe a source with two
attributesa, andb, mediated schem@ also have two single-
ton clusterse; = {a} andc, = {b}. SupposepM has two
mappingsn; with probability 0.5 mappinga in S to ¢; and
bto c2, andmg with probability0.5 mappinga in S to ¢ and
b to c1. There exists no p-med-scherv and deterministic

M = maz{mazi(3_; ci,;), max; (3, cij)}

Therefore, using the condition from the theorem we hiakg < 1.
Hence it is sufficient for us to find a p-mapping that Hes+ 1
mappings, among which/ mappings each has probabiligyand
one mapping is empty and has probability— M - ¢). For each
mapping to have probability, we need to pick at most one unit
correspondence for every source or mediated attributesiGernng
attributes as nodes, and correspondences as edges, weluaa re



our problem of finding such a p-mapping to the following brtfia
matching problem:

Consider a bipartite grapf¥(V1, V», E), whereFE is a
multi-set of edges between a vertexlih and a vertex

in V2. Suppose all vertices are associated with at most
M edges. FindV/ bipartite matchings betwedr, and

V4 such that every edge if appears in exactly one bi-
partite matching.

We prove the existence of a solution to the above problem by
induction onM. SupposeM = 1, then every vertex is involved
in at most one edge, and hence the set of all edges constitutes
bipartite matching. Let us now suppose there exists a soldtr
the problem whenV/ < k; we prove the existence of a solution
whenM = (k + 1). SupposeéV! = (k + 1), consider all vertices
that have(k + 1) edges. Pick exactly one edge from every such
vertex and add it to a séB. (First pick edges between a pair of
nodes that each hayé + 1) edges, and then pick edges with one
endpoint havindk + 1) edges.) Sincé contains at most one edge
per vertex, it is a matching. And since the remaining graghdia
mostk edges per node, using the induction hypothesis we can find
a set ofk bipartite matchingss. The set of matching§ U { B} is
a solution to the problem. O



